ON NORMABILITY OF A SPACE OF MEASURABLE REAL FUNCTIONS

László Zsilinszky

ABSTRACT. Let (X, S, μ) be a σ -finite measure space. Denote by \mathcal{M} the class of all S-measurable functions that are finite almost everywhere on X. Gribanov in [G] considers the topology of convergence in measure on sets of finite measure on \mathcal{M} . This topological space is normable if and only if X is a union of finite many atoms of finite measure.

INTRODUCTION

The metric space (s, ρ) of all real sequences endowed with the Fréchet metric

$$\rho(a,b) = \sum_{i} 2^{-i} \frac{|a_i - b_i|}{1 + |a_i - b_i|}, \text{ where } a = \{a_i\}_i, b = \{b_i\}_i \in s$$

has been thoroughly investigated by several authors for it offers a convenient background for studying diverse properties of real sequences (cf.[KŠ],[EŠ],[N],[TZs]). The space (s, ρ) has hoverwer also an unfavourable property, namely it is non-normable (see []).

Gribanov considers in [G] the following generalization of (s, ρ) : Let (X, S, μ) be a σ -finite measure space such that $\mu(X) > 0$. Then $X = \bigcup_i X_i$ for some sequence $\{X_i\}_i$ of pairwise disjoint S-measurable sets of positive finite measure. Denote by \mathcal{M} the class of all S-measurable functions that are finite almost everywhere on X. We will identify members of \mathcal{M} if they equal a.e. on X. Put

$$d(f,g) = \sum_{i} \frac{1}{2^{i} \mu(X_{i})} \int_{X_{i}} \frac{|f-g|}{1+|f-g|} d\mu$$

for all $f, g \in \mathcal{M}$.

Observe that this construction yields a generalization of (s, ρ) indeed, since if we take for X the set of all natural numbers \mathbb{N} , for S the potential set of \mathbb{N} , for μ the counting measure on \mathbb{N} (i.e. $\mu(A)=\operatorname{card}(A)$ for $A \subset \mathbb{N}$ finite and $\mu(A) = +\infty$ for A infinite) and put $X_i = \{i\}$ for all $i \in \mathbb{N}$, then \mathcal{M} reduces to s and d to ρ , respectively.

It can be shown that several properties of (s, ρ) hold for (\mathcal{M}, d) as well, e.g. (\mathcal{M}, d) is a complete metric space ([G], Theorem 2). It is the purpose of this paper to characterize σ -finite measure spaces (X, S, μ) so as (\mathcal{M}, d) be normable.

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$

LÁSZLÓ ZSILINSZKY

MAIN RESULTS

Throughout this section (X, S, μ) will be a σ -finite (possibly finite) measure space. The symbol χ_A will stand for the characteristic function of the set $A \subset X$.

First we establish how d-convergence (denoted $f_n \xrightarrow{d} f$) and convergence in measure (denoted $f_n \xrightarrow{\mu} f$) of measurable functions interact and when they coincide:

Proposition 1. Let $f, f_n \in \mathcal{M}$ $(n \in \mathbb{N})$. The following are equivalent:

- (i) $f_n \xrightarrow{d} f$;
- (ii) $f_n \xrightarrow{\mu} f$ on every S-measurable set of finite measure;
- (iii) $f_n \xrightarrow{\mu} f$ on X_i for all $i \in \mathbb{N}$.

Proposition 2. We have

- (i) given f, f_n ∈ M(n ∈ N), f_n → f implies f_n → f;
 (ii) given f, f_n ∈ M(n ∈ N), f_n → f implies f_n → f if and only if μ is finite.

Now we turn to investigating the normability of (\mathcal{M}, d) .

Lemma. Suppose there exists a norm $\|\cdot\|$ on \mathcal{M} such that given $f, f_n \in \mathcal{M}$ $(n \in \mathcal{M})$ $\mathbb{N}), f_n \xrightarrow{d} f \text{ implies } f_n \xrightarrow{\|\cdot\|} f.$ Then there exists a $\gamma > 0$ and an $n \in \mathbb{N}$ such that for all $f \in \mathcal{M}$ with unit norm

(*)
$$\int_{\bigcup_1^n X_i} |f| d\mu \ge \gamma.$$

Proof. Assume the contrary. Then for each $n \in \mathbb{N}$ there is an $f_n \in \mathcal{M}$ of unit norm such that

$$\frac{1}{n} > \int_{\bigcup_{1}^{n}} |f_{n}| d\mu \ge \int_{X_{i}} |f_{n}| d\mu \text{ for all } 1 \le i \le n.$$

so $\{f_n\}_n$ converges in mean to $f_0 = 0$ on X_i for all $i \in \mathbb{N}$, which implies its convergence in measure to f_0 on every X_i ([H]), hence by Proposition 1(iii) $f_n \xrightarrow{d} f_0$.

On the other hand $f_n \xrightarrow{\|\cdot\|} f_0$, since $\|f_n\| = 1$ for all $n \in \mathbb{N}$ and $\|f_0\| = 0$. \Box

Theorem. The following are equivalent:

- (i) (\mathcal{M}, d) is normable;
- (ii) X is a union of finite many atoms of finite measure.

Proof. Suppose (ii). Then the functions from \mathcal{M} have finite range since measurable functions are constant on atoms. It means that \mathcal{M} coincides with the integrable functions on X, which are normable by the norm

$$\|f\| = \int_X |f| d\mu.$$

This norm however generates the topology of (\mathcal{M}, d) , since by [T], Theorem 3 $(i) \Rightarrow (ii)$, in our case convergence in mean is equivalent to convergence in measure which is in turn equivalent to *d*-convergence by Proposition 2.

Conversely, suppose there exists a norm $\|\cdot\|$ on \mathcal{M} which generates the topology of (\mathcal{M}, d) and (ii) fails to hold. Then X is decomposable into a denumerable sequence $\{X_n\}_{n=1}^{\infty}$ of sets of finite positive measure. Further given $f, f_n \in \mathcal{M}$ $(n \in \mathbb{N})$, $f_n \stackrel{d}{\to} f$ implies $f_n \stackrel{\|\cdot\|}{\to} f$.

$$\begin{split} \mathbb{N}), & f_n \xrightarrow{d} f \text{ implies } f_n \xrightarrow{\|\cdot\|} f. \\ \text{Then in view of the Lemma there exists a } \gamma > 0 \text{ and an } n \in \mathbb{N} \text{ such that (*)} \\ \text{holds for every } f \in \mathcal{M} \text{ of unit norm. The function } g = \chi_{X \setminus \bigcup_{i=1}^n X_i} \text{ is nonvanishing,} \\ \text{consequently } f = \frac{g}{\|g\|} \in \mathcal{M} \text{ and clearly } \|f\| = 1. \text{ It means by (*) that } 0 = \\ \int_{\bigcup_{i=1}^n X_i} |g| d\mu \ge \gamma \|g\|, \text{ hence } g \equiv 0 \text{ which is a contradiction. } \Box \end{split}$$

References

- [EŠ] J. Ewert and T. Šalát, Applications of the category method in the theory of modular sequence spaces, Acta Math. Univ. Comen. 48-49 (1986), 133-143.
- [G] J.I. Gribanov, On metrization of a space of functions, CMUC 4 (1963), 43-46.
- [H] P.R. Halmos, *Measure Theory*, D. van Nostrand, Toronto-New York-London, 1950.
- [KŠ] P. Kostyrko and T. Šalát, On the exponent of convergence, Rend. Circ. Mat. Palermo 31 (1982), 187-194.
- [N] A. Neubrunnová, K štruktúre niektorých pristorov postupností, Acta Fac. Rer. Nat. Univ. Com. Mathematica 19 (1968), 19-26.
- [T] R.J. Tomkins, On the equivalence of modes of convergence, Canad. Math. Bull. 15 (1973), 571-575.
- [TZs] J. Tóth and L. Zsilinszky, On a typical property of functions, Math. Slovaca 45 (1995), 121-127.