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Abstract. Let (X, S, µ) be a σ-finite measure space. Denote by M the class of
all S-measurable functions that are finite almost everywhere on X. Gribanov in [G]

considers the topology of convergence in measure on sets of finite measure on M.
This topological space is normable if and only if X is a union of finite many atoms

of finite measure.

Introduction

The metric space (s, ρ) of all real sequences endowed with the Fréchet metric

ρ(a, b) =
∑

i

2−i |ai − bi|
1 + |ai − bi|

, where a = {ai}i, b = {bi}i ∈ s

has been thoroughly investigated by several authors for it offers a convenient back-
ground for studying diverse properties of real sequences (cf.[KŠ],[EŠ],[N],[TZs]).
The space (s, ρ) has hoverwer also an unfavourable property, namely it is non-
normable (see [ ]).

Gribanov considers in [G] the following generalization of (s, ρ): Let (X, S, µ) be
a σ-finite measure space such that µ(X) > 0. Then X = ∪iXi for some sequence
{Xi}i of pairwise disjoint S-measurable sets of positive finite measure. Denote by
M the class of all S-measurable functions that are finite almost everywhere on X.
We will identify members of M if they equal a.e. on X. Put

d(f, g) =
∑

i

1
2iµ(Xi)

∫
Xi

|f − g|
1 + |f − g|

dµ

for all f, g ∈M.
Observe that this construction yields a generalization of (s, ρ) indeed, since if

we take for X the set of all natural numbers N, for S the potential set of N, for µ
the counting measure on N (i.e. µ(A)=card(A) for A ⊂ N finite and µ(A) = +∞
for A infinite) and put Xi = {i} for all i ∈ N, then M reduces to s and d to ρ,
respectively.

It can be shown that several properties of (s, ρ) hold for (M, d) as well, e.g.
(M, d) is a complete metric space ([G],Theorem 2). It is the purpose of this paper
to characterize σ-finite measure spaces (X, S, µ) so as (M, d) be normable.
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Main Results

Throughout this section (X, S, µ) will be a σ-finite (possibly finite) measure
space. The symbol χA will stand for the characteristic function of the set A ⊂ X.

First we establish how d-convergence (denoted fn
d→ f) and convergence in

measure (denoted fn
µ→ f) of measurable functions interact and when they coincide:

Proposition 1. Let f, fn ∈M (n ∈ N). The following are equivalent:

(i) fn
d→ f ;

(ii) fn
µ→ f on every S-measurable set of finite measure;

(iii) fn
µ→ f on Xi for all i ∈ N.

Proposition 2. We have

(i) given f, fn ∈M(n ∈ N), fn
µ→ f implies fn

d→ f ;
(ii) given f, fn ∈M(n ∈ N), fn

d→ f implies fn
µ→ f if and only if µ is finite.

Now we turn to investigating the normability of (M, d).

Lemma. Suppose there exists a norm ‖ · ‖ on M such that given f, fn ∈M (n ∈
N), fn

d→ f implies fn
‖·‖→ f .

Then there exists a γ > 0 and an n ∈ N such that for all f ∈M with unit norm

(*)
∫

⋃n
1 Xi

|f |dµ ≥ γ.

Proof. Assume the contrary. Then for each n ∈ N there is an fn ∈M of unit norm
such that

1
n

>

∫
⋃n

1

|fn|dµ ≥
∫

Xi

|fn|dµ for all 1 ≤ i ≤ n,

so {fn}n converges in mean to f0 = 0 on Xi for all i ∈ N, which implies its
convergence in measure to f0 on every Xi ([H]), hence by Proposition 1(iii) fn

d→ f0.

On the other hand fn
‖·‖9 f0, since ‖fn‖ = 1 for all n ∈ N and ‖f0‖ = 0. �

Theorem. The following are equivalent:
(i) (M, d) is normable;
(ii) X is a union of finite many atoms of finite measure.

Proof. Suppose (ii). Then the functions fromM have finite range since measurable
functions are constant on atoms. It means that M coincides with the integrable
functions on X, which are normable by the norm

‖f‖ =
∫

X

|f |dµ.

This norm however generates the topology of (M, d), since by [T], Theorem 3
(i)⇒(ii), in our case convergence in mean is equivalent to convergence in measure
which is in turn equivalent to d-convergence by Proposition 2.
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Conversely, suppose there exists a norm ‖·‖ on M which generates the topology
of (M, d) and (ii) fails to hold. Then X is decomposable into a denumerable
sequence {Xn}∞n=1 of sets of finite positive measure. Further given f, fn ∈M (n ∈
N), fn

d→ f implies fn
‖·‖→ f .

Then in view of the Lemma there exists a γ > 0 and an n ∈ N such that (*)
holds for every f ∈M of unit norm. The function g = χX\

⋃n
i=1 Xi

is nonvanishing,
consequently f = g

‖g‖ ∈ M and clearly ‖f‖ = 1. It means by (*) that 0 =∫⋃n
i=1 Xi

|g|dµ ≥ γ‖g‖, hence g ≡ 0 which is a contradiction. �
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